Uncertainty quantification in multiscale deformation processes

Babak Kouchmeshky1 and Nicholas Zabaras2

1-Graduate Research Associate, Cornell University, Ithaca, NY, USA
email: bk84@cornell.edu

2-Professor, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
email: zabaras@cornell.edu

We present a non-intrusive method for modeling the propagation of uncertainty in process conditions and initial microstructure on the final product properties in a deformation process. The stochastic deformation problem is modeled using a sparse grid collocation approach that allows the utilization of a deterministic simulator to build interpolants of the main solution variables in the stochastic support space. The ability of the method in estimating the statistics of the macro-scale microstructure-sensitive properties such as ductility and hardness and constructing the convex hull of these properties is shown through examples featuring randomness in initial texture and process parameters. A data-driven model reduction methodology together with a maximum entropy approach is used for representing randomness in initial texture in Rodrigues space. Comparisons are made with the results obtained from Monte-Carlo method.