An information-theoretic approach to multiscale modeling and design of materials

Nicholas Zabaras
Materials Process Design and Control Laboratory
Sibley School of Mechanical and Aerospace Engineering
188 Frank H. T. Rhodes Hall
Cornell University, Ithaca, NY 14853-3801
Email: zabaras@cornell.edu
URL: http://www.mae.cornell.edu/zabaras/

Abstract

We will address the development of viable solutions to multiscale modeling and design of materials through a combination of computational techniques for microstructure representation and classification, stochastic modeling of microstructure evolution, statistical learning tools over meso- and micro-scale databases for identifying synergies between processing/structure/properties, statistical information transfer between length scales, and stochastic deformation process simulation.

We will emphasize the use of information-theoretic concepts for analysis of materials. Such approach is essential to quantify information at various length scales and to provide a consistent mathematical framework for modeling information loss across length scales in a multiscale stochastic simulation.

Contact: Jeffrey Bullard, ext. 5725